simulasi Gerak lurus berubah beraturan (GLBB) – Gerak jatuh bebas menggunakan arduino

Gerak lurus berubah beraturan (GLBB) adalah gerak lurus yang percepatannya tetap, artinya kecepatannya berubah beraturan. terdapat beberapa jenis GLBB yaitu :

  1. Gerak vertikal ke atas
  2. Gerak jatuh bebas
  3. Gerak vertikal ke bawah

untuk keperluan simulasi gerak lurus berubah beraturan diperlukan peralatan sebagai berikut :

  1. Arduino uno
  2. 3x sensor obstacle
  3. sensor ultrasonic
  4. Tombol

Dengan tata letak seperti berikut:

Skema simulasi GLBB menggunakan arduino:

sketch/koding simulasi gerak lurus berubah beraturan berbasis arduino:

#define tinggiSensorBawah   10//cm

#define pinTombolMulai      A0

#define pinSensorA          8
#define pinSensorB          9
#define pinSensorC          10

#include <Ultrasonic.h>

Ultrasonic ultrasonic(3, 2);

uint16_t nomor;

void setup() {
  pinMode(pinTombolMulai, INPUT_PULLUP);

  pinMode(pinSensorA, INPUT_PULLUP);
  pinMode(pinSensorB, INPUT_PULLUP);
  pinMode(pinSensorC, INPUT_PULLUP);

  Serial.begin(9600);
  Serial.println("Gerak Lurus Berubah Beraturan");
  Serial.println("https://www.project.semesin.com");

  Serial.println();
  Serial.println("Gerak Lurus Berubah Beraturan (jatuh bebas)");
  Serial.println("No\tJarak (cm)\tWaktu (s)\tPercepatan (cm/s2)");

}

void loop() {

  if (!digitalRead(pinTombolMulai))
  {
    delay(50);
    if (!digitalRead(pinTombolMulai))
    {
      while (!digitalRead(pinTombolMulai));

      uint16_t tinggi = 1.0 * ultrasonic.read() - tinggiSensorBawah;
      float jarakSensor = 1.0 * tinggi / 2;

      unsigned long waktuA, waktuB, waktuC;
      bool mulaiDiTitikA, mulaiDiTitikC = false;
      while (1)
      {
        if (!digitalRead(pinSensorA))
        {
          waktuA = micros();
          mulaiDiTitikA = true;
          break;
        }
        if (!digitalRead(pinSensorC))
        {
          waktuC = micros();
          mulaiDiTitikC = true;
          break;
        }
      }

      while (digitalRead(pinSensorB));
      waktuB = micros();

      while (1)
      {
        if (!digitalRead(pinSensorA))
        {
          waktuA = micros();
          break;
        }
        if (!digitalRead(pinSensorC))
        {
          waktuC = micros();
          break;
        }
      }

      float waktu_ac = abs(1.0 * waktuC - waktuA) / 1000000;//detik
      float waktu_ab = abs(1.0 * waktuB - waktuA) / 1000000;//detik
      float waktu_bc = abs(1.0 * waktuC - waktuB) / 1000000;//detik

      float kecepatan_ab = 0.5 * jarakSensor / waktu_ab;//cm/s
      float kecepatan_cb = 0.5 * jarakSensor / waktu_ab;//cm/s
      float kecepatan_bc = 0.5 * jarakSensor / waktu_bc;//cm/s

      float percepatan;
      if (mulaiDiTitikA)
      {
        percepatan = (1.0 * kecepatan_bc - kecepatan_ab) / waktu_bc;//cm/s2
      }
      if (mulaiDiTitikC)
      {
        percepatan = (1.0 * kecepatan_ab - kecepatan_bc) / waktu_ab;//cm/s2
      }

      char buffer[200];
      char strWaktu_ac[10];
      char strPercepatan[10];

      dtostrf(waktu_ac, 8, 2, strWaktu_ac);
      dtostrf(percepatan, 8, 2, strPercepatan);

      sprintf(buffer, "%d\t%d\t\t%s\t%s", nomor, tinggi, strWaktu_ac, strPercepatan);
      Serial.println(buffer);
      nomor++;

    }
  }
}

Library:

webserver + ajax dengan Nodemcu (esp8266) (aplikasi monitoring suhu dan kelembaban)

Monitoring atau kegiatan pemantauan bisa dilakukan dari jarak jauh melalui sistem komunikasi internet maupun metode komunikasi lainnya. Salah satu unsur monitoring data adalah display atau tampilan dimana beberapa aspek yang perlu diperhatikan adalah :

  1. Informatif, data yang ditampilkan mampu memberikan perspektif kondisi yang ada, sebagai contoh tampilan grafik: selain menunjukkan data juga akan memberikan gambaran pergerakan dari data-data sebelumnya (naik/turun).
  2. Real time. yaitu datayang tampil merupakan data lapangan saat ini dan terus diperbaharui dalam frekuensi tertentu dimana semakin besar akan semakin realtime.
  3. Bandwidth, adalah besarnya lalu lintas data yang terpakai oleh aktifitas monitoring, jadi sistem yang baik perlu mempertimbangkan metode lalu lintas data sekecil mungkin tanpa mengurangi aspek lainnya.
  4. Kenyamanan, berkaitan dengan design dan pola dinamik tampilan saat perubahan data.

Ajax

Asynchronous Javascript and XML (Ajax) adalah metode lalu lintas data web secara asynchronous (dibelakang layar) antara interface web (browser) dengan server yang bertujuan memberikan fitur interaktif kepada pengguna.

penggunaan ajax memungkinkan update data fleksibel tanpa perlu melakukan aksi (menekan tombl update) atau refresh halaman web.

Tampilan monitoring suhu dan kelembaban menggunakan nodemcu:

Komponen yang digunakan dalam perancangan monitoring suhu dan kelembaban berbasis webserver nodemcu :

  1. Nodemcu
  2. DHT11

Skema ajax webserver dengan nodemcu:

Sketch/program webserver nodemcu dengan ajax relatime:

#define jumlahData        5
#define hotspotSSID       "XXXXXXXX"
#define hotspotPassword   "XXXXXXXX"
#define pinDHT            D4

#include <ESP8266WiFi.h>
#include <WiFiClient.h>
#include <ESP8266WebServer.h>

#include <dht.h>

dht DHT;

ESP8266WebServer server(80);

struct Data
{
  uint32_t index;
  float temperatur;
  float kelembaban;
};

Data data[jumlahData];
byte ringIndex;
uint32_t indexDataDHT;
long millisBacaSensor;

void handleRoot() {
  char buffer[] =
    "<html><head>"
    "  <title>Temperatur dan Kelembaban</title>"
    "  <meta charset='UTF-8'>"
    "  <script src='https://code.highcharts.com/highcharts.js'></script>"
    "</head>"
    "<body>"
    "  <center>"
    "    <h1>Temperatur dan Kelembaban</h1>"
    "    <h2>Grafik Temperatur dan Kelembaban</h2>"
    "    <div id='grafik' style='height:400px;'></div>"
    "  </center>"
    "<script type='text/javascript'>"
    "  var timerId = setInterval('updateGrafik()', 1000);"
    "  var grafik = Highcharts.chart('grafik', {"
    "    title: {text: ''},"
    "    xAxis: {title: {text: 'index'},categories: [],rotation:90,},"
    "    yAxis: ["
    "      {labels: {format: '{value} Ā°C',style: {color: Highcharts.getOptions().colors[1]}},title: {text: 'Temperatur'},},"
    "      {labels: {format: '{value} %',style: {color: Highcharts.getOptions().colors[1]}},title: {text: 'Kelembaban'},opposite: true,}, ],"
    "    credits: {enabled: false},"
    "    series: ["
    "      {name: 'Temperatur',yAxis: 0,data: []}, "
    "      {name: 'Kelembaban',yAxis: 1,data: []}, ]"
    "  });"
    "  function updateGrafik(){"
    "    var xhttp = new XMLHttpRequest();"
    "    xhttp.onreadystatechange = function() {"
    "      if (this.readyState == 4 && this.status == 200) {"
    "        eval(this.responseText.trim());}};"
    "    xhttp.open('GET', '/updateData', true);"
    "    xhttp.send(); }"
    "</script>"
    "</body></html>";
  server.send(200, "text/html", buffer);
}

void handleNotFound()
{
  server.send(404, "text/plain", "Alamat tidak ditemukan");
}

void updateData()
{
  char buffer[1000];
  byte index;

  strcpy(buffer, "grafik.xAxis[0].setCategories([");

  index = ringIndex;
  for (byte i = 0; i < jumlahData; i++)
  {
    sprintf(&buffer[strlen(buffer)], "%lu,", data[index].index);
    index++;
    index %= jumlahData;
  }
  strcpy(&buffer[strlen(buffer)], "]);");

  strcpy(&buffer[strlen(buffer)], "grafik.series[0].setData([");
  index = ringIndex;
  for (byte i = 0; i < jumlahData; i++)
  {
    dtostrf(data[index].temperatur, 8, 2, &buffer[strlen(buffer)]);
    strcpy(&buffer[strlen(buffer)], ",");
    index++;
    index %= jumlahData;
  }
  strcpy(&buffer[strlen(buffer)], "]);");

  strcpy(&buffer[strlen(buffer)], "grafik.series[1].setData([");
  index = ringIndex;
  for (byte i = 0; i < jumlahData; i++)
  {
    dtostrf(data[index].kelembaban, 8, 2, &buffer[strlen(buffer)]);
    strcpy(&buffer[strlen(buffer)], ",");
    index++;
    index %= jumlahData;
  }
  strcpy(&buffer[strlen(buffer)], "]);");

  server.send(200, "text/html", buffer);

}


void setup(void) {
  Serial.begin(9600);
  Serial.println("Web server dengan fitur ajax menggunakan nodemcu (aplikasi monitor suhu dan kelembaban)");
  Serial.println("https://www.project.semesin.com");
  
  WiFi.mode(WIFI_STA);
  WiFi.begin(hotspotSSID, hotspotPassword);
  Serial.println("");

  // Wait for connection
  while (WiFi.status() != WL_CONNECTED) {
    delay(500);
    Serial.print(".");
  }

  Serial.println("");
  Serial.print("Connected to ");
  Serial.println(hotspotSSID);
  Serial.print("IP address: ");
  Serial.println(WiFi.localIP());

  server.on("/", handleRoot);
  server.on("/updateData", updateData);
  server.onNotFound(handleNotFound);

  server.begin();
  Serial.println("HTTP server started");
}

void loop(void) {
  server.handleClient();

  if (millisBacaSensor < millis())
  {
    millisBacaSensor = millis() + 1000;

    if (DHT.read11(pinDHT) == DHTLIB_OK)
    {
      data[ringIndex].index = indexDataDHT;
      data[ringIndex].temperatur = DHT.temperature;
      data[ringIndex].kelembaban = DHT.humidity;

      indexDataDHT++;

      ringIndex++;
      ringIndex %= jumlahData;
    }
  }
}

Library:

Timbangan tampilan seven segment menggunakan arduino

Penggunaan timbangan secara umum membutuhkan akurasi dan presisi. Dalam skala lebih luas sebaiknya unit timbangan juga informatif sehingga dapat diketahui hasilnya secara luas. Untuk keperluan ini, unit timbanganĀ  harus memiliki sarana display yang memadai seperti menggunakan display dot mattrix, seven segment dan sebagainya.

Fitur timbangan

Fitur/fasilitas timbangan bisa bermacam sesuai kebutuhan. Dalam perancangan timbangan 7-segment ini memasukkan fitur-fitur penting diantaranya :

    1. Kalibrasi

Kalibrasi adalah kegiatan untuk memastikan timbangan memiliki akurasi dan presisi yang baik. dalam perancangan ini prosedur kalibrasinya sebagai berikut:

    • Posisi perangkat timbangan dalam keadaan mati
    • Letakkan beban tera 1Kg
    • Tekan dan tahan tombol [hold]
    • Hidupkan perangkat timbangan (akan muncul tulisan ‘load 1’ di tampilan seven segment)
    • lepas tombol [hold]
    • Tunggu hingga muncul tulisan ‘load 2’ di 7-segment
    • Letakkan beban tera 2.5 Kg
    • Tekan dan lepas tombol [hold]
    • Tunggu hingga muncul tulisan ‘siap’ didisplay 7-segment
    • Kalibrasi selesai
  1. tombol tare
  2. tombol hold
  3. Tampilan seven segment

Seven Segmen

Seven segment memiliki kelebihan dari display lainnya, diantaranya :

  1. Intensitas cahaya lebih terang (akan berkurang jika menggunakan sistem scanning)
  2. Mudah terbaca dari jarak jauh (lebih jelas)
  3. Jika menggunakan mikrokontroler, lebih sedikit menggunakan resources (memory dan waktu proses)
  4. Menggunakan komponen lebih sedikit (non module)
  5. Perbandingan cahaya vs daya terpakai lebih sedikit sehingga lebih hemat.

Dalam proyek timbangan informatif dengan display 7-segment berbasis arduino ini menggunakan komponen sebagai berikut:

Komponen yang digunakan dalam perancangan timbangan sevent segment menggunakan arduino:

  1. Arduino uno
  2. modul hx711 dan loadcell 5Kg
  3. IC uln2003
  4. 5x 7-Segment CC
  5. 2x Tombol

Skema timbangan tampilan seven segmen:

source code/program arduino timbangan seven segment:

 

#include "HX711.h"
#include <TimerOne.h>
#include <EEPROM.h>

#define CCorCA                1//0 = CC, 1 = CA (rangkaian dengan resistor)
#define tareSaatMulai         1

#define beratKalibrasi1Tera   1.0f  //Kg
#define beratKalibrasi2Tera   1.00f  //Kg
#define beratMaksimal         2.50 //Kg
#define jumlahSampling        5     //kali
#define frekuensiUpdateData   20    //kali per detik

//pin
HX711 scale(3, 2); // (DT, SCK)

#define pin1    A0
#define pin2    A1
#define pin3    A2
#define pin4    A3
#define pin5    A4

#define pinA    4
#define pinB    5
#define pinC    6
#define pinD    7
#define pinE    8
#define pinF    9
#define pinG    10
#define pinDot  11

#define pinTare 12
#define pinHold 13

#define dotBlank 6
#define dotAll   5

byte pin7Segment[] = {pinA, pinB, pinC, pinD, pinE, pinF, pinG};
byte pin7SegmentCommon[] = {pin1, pin2, pin3, pin4, pin5};
byte posisiTitik = dotBlank;

const char angka[] = {
  0b00111111,
  0b00000110,
  0b01011011,
  0b01001111,
  0b01100110,
  0b01101101,
  0b01111100,
  0b00000111,
  0b01111111,
  0b01100111,
  0b00000000,//blank
  0b01000000,//strip
  0b00111000,//L
  0b01011100,//o
  0b01011111,//a
  0b01011110,//d
  0b01101101,//S
  0b00000100,//i
  0b01110011,//p
  
};
#define Seg_blank 10
#define Seg_stip 11
#define Seg_L 12
#define Seg_o 13
#define Seg_a 14
#define Seg_d 15
#define Seg_S 16
#define Seg_i 17
#define Seg_p 18

//volatile uint32_t beratBCD = 0;
volatile uint8_t beratBCD[5];
volatile byte lastScanIndex = 0;
volatile byte index7Segment = 0;

long lastMillis;
long kirimDataMillis;
byte modeKalibrasi = 0;
long beratKalibrasi1;
long beratKalibrasi2;
float beratTerukur;
bool tahanNilai = false;
byte timbangBeratCounter = 0;

#define alamatKalibrasiM 0
#define alamatKalibrasiC 4

void setup() {
  Serial.begin(9600);
  Serial.println(F("Timbangan tampilan seven segment menggunakan arduino"));
  Serial.println(F("https://www.project.semesin.com"));
  
  pinMode(pin1, OUTPUT);
  pinMode(pin2, OUTPUT);
  pinMode(pin3, OUTPUT);
  pinMode(pin4, OUTPUT);
  pinMode(pin5, OUTPUT);

  pinMode(pinA, OUTPUT);
  pinMode(pinB, OUTPUT);
  pinMode(pinC, OUTPUT);
  pinMode(pinD, OUTPUT);
  pinMode(pinE, OUTPUT);
  pinMode(pinF, OUTPUT);
  pinMode(pinG, OUTPUT);
  pinMode(pinDot, OUTPUT);

  pinMode(pinTare, INPUT_PULLUP);
  pinMode(pinHold, INPUT_PULLUP);

  Timer1.initialize(2000);
  Timer1.attachInterrupt( timerIsr );

  float m,c;

  scale.power_up();
  
  //Mode kalibrasi
  if(!digitalRead(pinHold))
  {
    delay(50);
    if(!digitalRead(pinHold))
    {
      beratBCD[4] = Seg_L;
      beratBCD[3] = Seg_o;
      beratBCD[2] = Seg_a;
      beratBCD[1] = Seg_d;
      beratBCD[0] = 1;

      while(!digitalRead(pinHold))//lepas
      {
        while(!digitalRead(pinHold))
        {
          delay(50);
        }
      }
      delay(1000);
      beratKalibrasi1 = scale.read_average(10);

      beratBCD[0] = 2;
      while(digitalRead(pinHold))//tekan
      {
        while(digitalRead(pinHold))
        {
          delay(50);
        }
      }
      delay(1000);
      beratKalibrasi2 = scale.read_average(10);
      
      m = 1.0 * (beratKalibrasi2 - beratKalibrasi1) / ( beratKalibrasi2Tera - beratKalibrasi1Tera);
      c = beratKalibrasi2 - (1.0 * m * beratKalibrasi2Tera);

      EEPROM.put(alamatKalibrasiM, m);
      EEPROM.put(alamatKalibrasiC, c);    

      beratBCD[4] = Seg_S;
      beratBCD[3] = Seg_i;
      beratBCD[2] = Seg_a;
      beratBCD[1] = Seg_p;
      beratBCD[0] = Seg_blank;

      delay(500);
    }
  }
  
  EEPROM.get(alamatKalibrasiM, m);
  EEPROM.get(alamatKalibrasiC, c);

  scale.set_scale(m);
  scale.set_offset(c);

#if tareSaatMulai
  scale.tare();
#endif
  
  scale.power_down();
  lastMillis = millis();
  kirimDataMillis = millis();
}

void loop() {

  if(!tahanNilai)
  {
    if(millis() - lastMillis > 10)
    {
      scale.power_up();
      delay(10);
      beratTerukur += scale.get_units(1);
      if(timbangBeratCounter++ == jumlahSampling)
      {
        beratTerukur = beratTerukur * 100 / jumlahSampling;
        if(beratTerukur < 0)
        {
          beratBCD[0] = 0;
          beratBCD[1] = 0;
          beratBCD[2] = 0;
          beratBCD[3] = Seg_stip;
          beratBCD[4] = Seg_blank;
          posisiTitik = 2;
        }
        else if(beratTerukur <= (beratMaksimal*100))
        {
          uint32_t BCD = Convert_IntToBCD32(beratTerukur);
          if((BCD & 0x0F) <= 5)
          {
            beratBCD[0] = 0;
          }
          else
          {
            beratBCD[0] = 5;
          }
          beratBCD[1] = (BCD >> 4) & 0x0F;
          beratBCD[2] = (BCD >> 8) & 0x0F;
          beratBCD[3] = (BCD >> 12) & 0x0F;
          beratBCD[4] = (BCD >> 16) & 0x0F;
          posisiTitik = 2;
        }
        beratTerukur = 0;
        timbangBeratCounter = 0;
      }
      scale.power_down();
      
      lastMillis = millis();
    }
  }

  //Kirim data setiap 100ms
  if(millis() - kirimDataMillis > (1000/frekuensiUpdateData))
  {
    if(beratTerukur <= 0)
    {
      Serial.println("0.00");
    }
    else
    {
      Serial.println(floor(beratTerukur)/100, 2);
    }

    kirimDataMillis = millis();
  }
  if(!digitalRead(pinTare))
  {
    delay(50);
    if(!digitalRead(pinTare))
    {
      beratBCD[0] = Seg_blank;
      beratBCD[1] = Seg_blank;
      beratBCD[2] = Seg_blank;
      beratBCD[3] = Seg_blank;
      beratBCD[4] = Seg_blank;
      posisiTitik = dotAll;
      scale.power_up();
      delay(10);
      scale.tare();
      scale.power_down();
      while(!digitalRead(pinTare));
    }
  }
  if(!digitalRead(pinHold))
  {
    delay(50);
    if(!digitalRead(pinHold))
    {
      tahanNilai = !tahanNilai;
      while(!digitalRead(pinHold));
    }
  }
}
void timerIsr()
{
  digitalWrite(pin7SegmentCommon[lastScanIndex], CCorCA?LOW:HIGH);
  drive7Segment(beratBCD[index7Segment]);
  if(posisiTitik == dotAll)
  {
    digitalWrite(pinDot, CCorCA?LOW:HIGH);
  }
  else if(posisiTitik == dotBlank)
  {
    digitalWrite(pinDot, CCorCA?HIGH:LOW);
  }
  else
  {
    digitalWrite(pinDot, (index7Segment == posisiTitik)?CCorCA?LOW:HIGH:CCorCA?HIGH:LOW);
  }
  digitalWrite(pin7SegmentCommon[index7Segment], CCorCA?HIGH:LOW);
  lastScanIndex = index7Segment++;
  if(index7Segment > 4)index7Segment = 0;
}
void drive7Segment(byte nilai)
{
  byte nilai7Segment = CCorCA?~angka[nilai]:angka[nilai];
  for(byte i=0;i<sizeof(pin7Segment);i++)
  {
    digitalWrite(pin7Segment[i], nilai7Segment & 0x01);
    nilai7Segment >>= 1;
  }
}
uint32_t Convert_IntToBCD32(uint32_t DecimalValue)
{
    uint32_t returnValue = 0;
    //uint32_t LSB_L = DecimalValue;
 
    while (DecimalValue >= 10000000L)
    {
        DecimalValue -= 10000000L;
        returnValue += 0x10000000;
    }
    while (DecimalValue >= 1000000L)
    {
        DecimalValue -= 1000000L;
        returnValue += 0x01000000;
    }
    while (DecimalValue >= 100000L)
    {
        DecimalValue -= 100000L;
        returnValue += 0x00100000;
    }
    while (DecimalValue >= 10000)
    {
        DecimalValue -= 10000;
        returnValue += 0x00010000;
    }
    while (DecimalValue >= 1000L)
    {
        DecimalValue -= 1000L;
        returnValue += 0x00001000;
    }
    while (DecimalValue >= 100)
    {
        DecimalValue -= 100;
        returnValue += 0x00000100;
    }
    while (DecimalValue >= 10)
    {
        DecimalValue -= 10;
        returnValue += 0x00000010;
    }
    return returnValue + DecimalValue;
}

Library yang digunakan dalam perakitan timbangan arduino:

  1. HX711.zip
  2. TimerOne.zip

Keamanan berlapis akses pintu menggunakan sandi keypad dan sidik jari menggunakan Code Vision

Sistem keamanan merupakan bagian sistem yang bertugas memberikan akses terhadap bagian-bagian yang dilindunginya. Jika unit yang dilindungi memiliki fungsi sangat vital yang hanya di boleh diakses oleh orang tertentu maka sistem keamanannya dibuat berlapis.

Infrastruktur sistem keamanan sudah sangat berkembang, beberapa yang sering digunakan pada aplikasi mikrokontroller diantaranya :

  1. Kata sandi dengan tombol/keypad/remot tv
  2. Kartu akses dengan RFID reader
  3. Sidik jari
  4. suara dengan voice recognition

Dalam perancangan dini menggunakan 2 lapis sistem keamanan yaitu kata sandi menggunakan keypad serta sidik jari.

Komponen yang digunakan:

  1. ATMega8535
  2. Keypad membrane 4×4
  3. Fingerprint dy50
  4. LCD I2c 16×2
  5. Solenoid doorlock
  6. Buzzer

Skema perancangan sistem keamanan berlapis (password dan fingerprint):
 

program code vision (cvavr) sistem keamanan menggunakan finger print dan keypad:

#include <mega8535.h>
#include <stdbool.h>
#include "fingerprint.h"
#include "lcdi2c.h"

// Declare your global variables here
#define password    "1234"
#define pinBuzzer   PORTD.3
#define pinKunci    PORTD.2

char buf[10];
uint8_t respon;

uint16_t timingFingerprintAktif;
uint16_t i;

char keypad;
char keypadBuffer[10];
bool statusPassword;
uint8_t keypadCnt;


#define DATA_REGISTER_EMPTY (1<<UDRE)
#define RX_COMPLETE (1<<RXC)
#define FRAMING_ERROR (1<<FE)
#define PARITY_ERROR (1<<UPE)
#define DATA_OVERRUN (1<<DOR)

// USART Receiver buffer
#define RX_BUFFER_SIZE 20
char rx_buffer[RX_BUFFER_SIZE];

#if RX_BUFFER_SIZE <= 256
unsigned char rx_wr_index=0,rx_rd_index=0;
#else
unsigned int rx_wr_index=0,rx_rd_index=0;
#endif

#if RX_BUFFER_SIZE < 256
unsigned char rx_counter=0;
#else
unsigned int rx_counter=0;
#endif

// This flag is set on USART Receiver buffer overflow
bit rx_buffer_overflow;

// USART Receiver interrupt service routine
interrupt [USART_RXC] void usart_rx_isr(void)
{
char status,data;
status=UCSRA;
data=UDR;
if ((status & (FRAMING_ERROR | PARITY_ERROR | DATA_OVERRUN))==0)
   {
   rx_buffer[rx_wr_index++]=data;
#if RX_BUFFER_SIZE == 256
   // special case for receiver buffer size=256
   if (++rx_counter == 0) rx_buffer_overflow=1;
#else
   if (rx_wr_index == RX_BUFFER_SIZE) rx_wr_index=0;
   if (++rx_counter == RX_BUFFER_SIZE)
      {
      rx_counter=0;
      rx_buffer_overflow=1;
      }
#endif
   }
}

#ifndef _DEBUG_TERMINAL_IO_
// Get a character from the USART Receiver buffer
#define _ALTERNATE_GETCHAR_
#pragma used+
char getchar(void)
{
char data;
while (rx_counter==0);
data=rx_buffer[rx_rd_index++];
#if RX_BUFFER_SIZE != 256
if (rx_rd_index == RX_BUFFER_SIZE) rx_rd_index=0;
#endif
#asm("cli")
--rx_counter;
#asm("sei")
return data;
}
#pragma used-
#endif


char scanning_keypad()
{
    PORTB = 0b01111111;
    delay_ms(20);
    if(PINB.0 == 0){while(PINB.0 == 0);return 'A';}
    if(PINB.1 == 0){while(PINB.1 == 0);return 'B';}
    if(PINB.2 == 0){while(PINB.2 == 0);return 'C';}
    if(PINB.3 == 0){while(PINB.3 == 0);return 'D';}
     
    PORTB = 0b10111111;
    delay_ms(20);
    if(PINB.0 == 0){while(PINB.0 == 0);return '3';}
    if(PINB.1 == 0){while(PINB.1 == 0);return '6';}
    if(PINB.2 == 0){while(PINB.2 == 0);return '9';}
    if(PINB.3 == 0){while(PINB.3 == 0);return '#';}
     
    PORTB = 0b11011111;
    delay_ms(20);
    if(PINB.0 == 0){while(PINB.0 == 0);return '2';}
    if(PINB.1 == 0){while(PINB.1 == 0);return '5';}
    if(PINB.2 == 0){while(PINB.2 == 0);return '8';}
    if(PINB.3 == 0){while(PINB.3 == 0);return '0';}
     
    PORTB = 0b11101111;
    delay_ms(20);
    if(PINB.0 == 0){while(PINB.0 == 0);return '1';}
    if(PINB.1 == 0){while(PINB.1 == 0);return '4';}
    if(PINB.2 == 0){while(PINB.2 == 0);return '7';}
    if(PINB.3 == 0){while(PINB.3 == 0);return '*';}    
    
    return 0;
     
}


// Standard Input/Output functions
#include <stdio.h>

void main(void)
{
// Declare your local variables here

// Input/Output Ports initialization
// Port A initialization
// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In 
DDRA=(0<<DDA7) | (0<<DDA6) | (0<<DDA5) | (0<<DDA4) | (0<<DDA3) | (0<<DDA2) | (0<<DDA1) | (0<<DDA0);
// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T 
PORTA=(0<<PORTA7) | (0<<PORTA6) | (0<<PORTA5) | (0<<PORTA4) | (0<<PORTA3) | (0<<PORTA2) | (0<<PORTA1) | (0<<PORTA0);

// Port B initialization
// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In 
DDRB=(1<<DDB7) | (1<<DDB6) | (1<<DDB5) | (1<<DDB4) | (0<<DDB3) | (0<<DDB2) | (0<<DDB1) | (0<<DDB0);
// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T 
PORTB=(0<<PORTB7) | (0<<PORTB6) | (0<<PORTB5) | (0<<PORTB4) | (1<<PORTB3) | (1<<PORTB2) | (1<<PORTB1) | (1<<PORTB0);

// Port C initialization
// Function: Bit7=In Bit6=In Bit5=In Bit4=Out Bit3=In Bit2=In Bit1=In Bit0=In 
DDRC=(0<<DDC7) | (0<<DDC6) | (0<<DDC5) | (1<<DDC4) | (0<<DDC3) | (0<<DDC2) | (0<<DDC1) | (0<<DDC0);
// State: Bit7=T Bit6=T Bit5=T Bit4=0 Bit3=T Bit2=T Bit1=T Bit0=T 
PORTC=(0<<PORTC7) | (0<<PORTC6) | (0<<PORTC5) | (0<<PORTC4) | (0<<PORTC3) | (0<<PORTC2) | (0<<PORTC1) | (0<<PORTC0);

// Port D initialization
// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In 
DDRD=(0<<DDD7) | (0<<DDD6) | (0<<DDD5) | (0<<DDD4) | (1<<DDD3) | (1<<DDD2) | (0<<DDD1) | (0<<DDD0);
// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T 
PORTD=(0<<PORTD7) | (0<<PORTD6) | (0<<PORTD5) | (0<<PORTD4) | (0<<PORTD3) | (0<<PORTD2) | (0<<PORTD1) | (0<<PORTD0);

// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: Timer 0 Stopped
// Mode: Normal top=0xFF
// OC0 output: Disconnected
TCCR0=(0<<WGM00) | (0<<COM01) | (0<<COM00) | (0<<WGM01) | (0<<CS02) | (0<<CS01) | (0<<CS00);
TCNT0=0x00;
OCR0=0x00;

// Timer/Counter 1 initialization
// Clock source: System Clock
// Clock value: Timer1 Stopped
// Mode: Normal top=0xFFFF
// OC1A output: Disconnected
// OC1B output: Disconnected
// Noise Canceler: Off
// Input Capture on Falling Edge
// Timer1 Overflow Interrupt: Off
// Input Capture Interrupt: Off
// Compare A Match Interrupt: Off
// Compare B Match Interrupt: Off
TCCR1A=(0<<COM1A1) | (0<<COM1A0) | (0<<COM1B1) | (0<<COM1B0) | (0<<WGM11) | (0<<WGM10);
TCCR1B=(0<<ICNC1) | (0<<ICES1) | (0<<WGM13) | (0<<WGM12) | (0<<CS12) | (0<<CS11) | (0<<CS10);
TCNT1H=0x00;
TCNT1L=0x00;
ICR1H=0x00;
ICR1L=0x00;
OCR1AH=0x00;
OCR1AL=0x00;
OCR1BH=0x00;
OCR1BL=0x00;

// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer2 Stopped
// Mode: Normal top=0xFF
// OC2 output: Disconnected
ASSR=0<<AS2;
TCCR2=(0<<WGM20) | (0<<COM21) | (0<<COM20) | (0<<WGM21) | (0<<CS22) | (0<<CS21) | (0<<CS20);
TCNT2=0x00;
OCR2=0x00;

// Timer(s)/Counter(s) Interrupt(s) initialization
TIMSK=(0<<OCIE2) | (0<<TOIE2) | (0<<TICIE1) | (0<<OCIE1A) | (0<<OCIE1B) | (0<<TOIE1) | (0<<OCIE0) | (0<<TOIE0);

// External Interrupt(s) initialization
// INT0: Off
// INT1: Off
// INT2: Off
MCUCR=(0<<ISC11) | (0<<ISC10) | (0<<ISC01) | (0<<ISC00);
MCUCSR=(0<<ISC2);

// USART initialization
// Communication Parameters: 8 Data, 1 Stop, No Parity
// USART Receiver: On
// USART Transmitter: On
// USART Mode: Asynchronous
// USART Baud Rate: 57600
UCSRA=(0<<RXC) | (0<<TXC) | (0<<UDRE) | (0<<FE) | (0<<DOR) | (0<<UPE) | (0<<U2X) | (0<<MPCM);
UCSRB=(1<<RXCIE) | (0<<TXCIE) | (0<<UDRIE) | (1<<RXEN) | (1<<TXEN) | (0<<UCSZ2) | (0<<RXB8) | (0<<TXB8);
UCSRC=(1<<URSEL) | (0<<UMSEL) | (0<<UPM1) | (0<<UPM0) | (0<<USBS) | (1<<UCSZ1) | (1<<UCSZ0) | (0<<UCPOL);
UBRRH=0x00;
UBRRL=0x08;

// Analog Comparator initialization
// Analog Comparator: Off
// The Analog Comparator's positive input is
// connected to the AIN0 pin
// The Analog Comparator's negative input is
// connected to the AIN1 pin
ACSR=(1<<ACD) | (0<<ACBG) | (0<<ACO) | (0<<ACI) | (0<<ACIE) | (0<<ACIC) | (0<<ACIS1) | (0<<ACIS0);
SFIOR=(0<<ACME);

// ADC initialization
// ADC disabled
ADCSRA=(0<<ADEN) | (0<<ADSC) | (0<<ADATE) | (0<<ADIF) | (0<<ADIE) | (0<<ADPS2) | (0<<ADPS1) | (0<<ADPS0);

// SPI initialization
// SPI disabled
SPCR=(0<<SPIE) | (0<<SPE) | (0<<DORD) | (0<<MSTR) | (0<<CPOL) | (0<<CPHA) | (0<<SPR1) | (0<<SPR0);

// TWI initialization
// TWI disabled
TWCR=(0<<TWEA) | (0<<TWSTA) | (0<<TWSTO) | (0<<TWEN) | (0<<TWIE);

// Global enable interrupts
#asm("sei")

i2c_begin();
lcd_begin(0x27,16,2); // alamat lcd i2c
lcd_clear();
lcd_puts("Sistem Keamanan");
lcd_gotoxy(0,1);
lcd_puts("www.semesin.com");
delay_ms(3000);

lcd_clear();
//rx_wr_index = 15;
fingerPrintBegin((uint8_t*)&rx_buffer, &rx_wr_index);
respon = checkPassword();
//sprintf(buf, "%2X", respon);
lcd_gotoxy(0,0);
lcd_puts("Akses terbatas  ");

delay_ms(2000);

keypadCnt = 0;

while (1)
      {
      // Place your code here
            while(1)
            {      
                if(!statusPassword)
                {
                    keypad = scanning_keypad();
                    if(keypad)
                    {
                        if(keypad == '#')
                        {           
                            keypadBuffer[keypadCnt] = 0; 
                                         
                            lcd_clear();              
                            lcd_gotoxy(0,0);
                            if(strcmp(keypadBuffer, password) == 0)
                            {
                                statusPassword = 1;          
                                timingFingerprintAktif = 30000;
                                lcd_puts("Tempel sidikjari");
                            }
                            else    
                            {
                                statusPassword = 0;
                                lcd_puts("Password salah  ");
                                for(i=0;i<3;i++)
                                {
                                    pinBuzzer = 1;
                                    delay_ms(1000);
                                    pinBuzzer = 0;
                                    delay_ms(1000);
                                }
                                lcd_clear();
                                lcd_puts("Akses terbatas  ");
                                
                            }                      
                            keypadCnt = 0;
                    		
                        }
                        if((keypad >= '0') &&(keypad <= '9')) 
                        {            
                            if(keypadCnt == 0)
                            {
                                lcd_gotoxy(0,0);
                                lcd_puts("Password :       ");
                            }                     
                            if(keypadCnt < 4)
                            {
                                lcd_gotoxy(keypadCnt,1);
                                lcd_send_data(keypad);          
                                keypadBuffer[keypadCnt] = keypad;
                                keypadCnt++;
                            }  
                    	
                        }
                    	
                    }          
                }
                else
                {
                    delay_ms(1);
                    timingFingerprintAktif--;
                    if(!timingFingerprintAktif)
                    {
                        statusPassword = 0;
                        pinBuzzer = 1;
                        delay_ms(1000);
                        pinBuzzer = 0;    
                        lcd_clear();
                        lcd_puts("Panel           ");  
                        
                    }   
                    lcd_gotoxy(0,1);  
                    lcd_puts("Tempelkan jari  ");
                    respon = getImage();
                    if(respon != FINGERPRINT_OK)
                    {
                        break;
                    }  

                    lcd_gotoxy(0,1);  
                    lcd_puts("Konversi gambar ");
                    respon = image2Tz(1);
                    if(respon != FINGERPRINT_OK)
                    {
                        break;
                    }  
                    
                    lcd_gotoxy(0,1);  
                    lcd_puts("Mencari id      ");
                    respon = fingerFastSearch();
                    if(respon != FINGERPRINT_OK)
                    {
                        break;
                    }                     
                    lcd_clear();
                    sprintf(buf, "id = %2d", fingerID);
                    lcd_gotoxy(0,1);  
                    lcd_puts(buf);
                    lcd_gotoxy(0,0);
                    lcd_puts("Panel");
                                        
                    pinKunci = 1;
                    delay_ms(5000);
                    pinKunci = 0; 
                }
            }
      }
}

library:

  1. fingerprint.h
  2. lcdi2c.h